Small-angle x-ray scattering studies of the iron-molybdenum cofactor from Azotobacter vinelandii nitrogenase. Academic Article uri icon

Overview

abstract

  • The nitrogenase enzyme complex, consisting of the molybdenum-iron protein and the iron protein, plays a critical role in the biological reduction of dinitrogen to ammonia (nitrogen fixation). The nitrogen-fixing site within the molybdenum-iron protein is an iron-molybdenum-sulfur cofactor (FeMoco) of roughly 1000-2000 Dalton mass. Structural aspects of FeMoco have been determined by spectroscopic and more recently by crystallographic studies. In order to determine the radius of gyration (Rg) of isolated FeMoco, we have performed small-angle x-ray scattering studies of FeMoco in N-methylformamide solution, in the absence of the molybdenum-iron protein. Model compounds of known structure have also been examined in similar solvents, N,N-dimethylformamide and acetonitrile, as controls and for calibration purposes. The Rg values obtained for the models are in good agreement with calculations based upon their respective crystal structures. However, the Rg obtained for FeMoco clearly indicates that the cofactor is not monomeric in solution, but rather aggregated and possibly polydisperse. Further, Rg values were also measured after addition of thiol, dithionite, and thiol and dithionite, to the FeMoco samples. The results indicate, surprisingly, that oxidation state and putative thiol coordination have no detectable effect on the aggregation behavior of FeMoco in solution, as determined by these measurements.

publication date

  • October 5, 1993

Research

keywords

  • Azotobacter vinelandii
  • Molybdoferredoxin
  • Nitrogenase

Identity

Scopus Document Identifier

  • 0027422563

PubMed ID

  • 8407930

Additional Document Info

volume

  • 268

issue

  • 28