Platelet endothelial cell adhesion molecule-1 is phosphorylatable by c-Src, binds Src-Src homology 2 domain, and exhibits immunoreceptor tyrosine-based activation motif-like properties.
Academic Article
Overview
abstract
Platelet endothelial cell adhesion molecule-1 (PECAM-1) is 130-kDa member of the immunoglobulin gene superfamily that localizes to cell-cell borders of confluent endothelial cells and has been shown to play a role in the control of endothelial sheet migration and leukocyte transmigration through the endothelium. The cytoplasmic tail plays an important role in the modulation of PECAM-1 function. Mutation of tyrosine 663 or 686 in the cytoplasmic tail reduces phosphorylation and mutation of 686 is associated with a reduction in PECAM-1-mediated inhibition of cell migration (1). We have previously noted that these two tyrosine residues are surrounded by consensus sequences for Src homology 2 (SH2) domain binding (1, 2), and the experiments presented explore the potential for PECAM-1-Src and PECAM-1-SH2 domain interactions. PECAM-1 is more highly phosphorylated in endothelial cells overexpressing c-Src, and in in vitro kinase assays, c-Src can phosphorylate a glutathione S-transferase (GST)-PECAM cytoplasmic tail fusion protein. The phosphorylated fusion protein associates with the bead-bound c-Src. This association appears to be mediated by Src-SH2 domain, because PECAM-1 can be precipitated by a GST-Src-SH2 affinity matrix. The binding to the GST-Src-SH2 affinity matrix correlates directly with the level of PECAM-1 phosphorylation, because more PECAM-1 is precipitated from c-Src overexpressors and from wild-type rather than Tyr663 --> Phe and Tyr686 --> Phe mutant PECAM-1 expressors. Yet unidentified phosphoproteins can also be coimmunoprecipitated with wild-type but not mutant PECAM-1. Finally, we note the similarity of the PECAM-1 cytoplasmic domain sequence to the immunoreceptor tyrosine-based activation motif. Our data begin to delineate how tyrosines 663 and 686 may play a role in mediating PECAM-1 signal transduction.