Clonal Abundance of Tumor-Specific CD4(+) T Cells Potentiates Efficacy and Alters Susceptibility to Exhaustion. Academic Article uri icon

Overview

abstract

  • Current approaches to cancer immunotherapy aim to engage the natural T cell response against tumors. One limitation is the elimination of self-antigen-specific T cells from the immune repertoire. Using a system in which precursor frequency can be manipulated in a murine melanoma model, we demonstrated that the clonal abundance of CD4(+) T cells specific for self-tumor antigen positively correlated with antitumor efficacy. At elevated precursor frequencies, intraclonal competition impaired initial activation and overall expansion of the tumor-specific CD4(+) T cell population. However, through clonally derived help, this population acquired a polyfunctional effector phenotype and antitumor immunity was enhanced. Conversely, development of effector function was attenuated at low precursor frequencies due to irreversible T cell exhaustion. Our findings assert that the differential effects of T cell clonal abundance on phenotypic outcome should be considered during the design of adoptive T cell therapies, including use of engineered T cells.

publication date

  • January 19, 2016

Research

keywords

  • CD4-Positive T-Lymphocytes
  • Melanoma, Experimental
  • Tumor Escape

Identity

PubMed Central ID

  • PMC4996670

Scopus Document Identifier

  • 84959063218

Digital Object Identifier (DOI)

  • 10.1016/j.immuni.2015.12.018

PubMed ID

  • 26789923

Additional Document Info

volume

  • 44

issue

  • 1