Testing-on-a-probe biosensors reveal association of early SARS-CoV-2 total antibodies and surrogate neutralizing antibodies with mortality in COVID-19 patients. uri icon

Overview

abstract

  • The association of mortality with early humoral response to SARS-CoV-2 infection within the first few days after onset of symptoms (DAOS) has not been thoroughly investigated partly due to a lack of sufficiently sensitive antibody testing methods. Here we report two sensitive and automated testing-on-a-probe (TOP) biosensor assays for SARS-CoV-2 viral specific total antibodies (TAb) and surrogate neutralizing antibodies (SNAb), which are suitable for clinical use. The TOP assays employ an RBD-coated quartz probe using a Cy5-Streptavidin-polysacharide conjugate to improved sensitivity and minimize interference. Disposable cartridge containing pre-dispensed reagents requires no liquid manipulation or fluidics during testing. The TOP-TAb assay exhibited higher sensitivity in the 0-7 DAOS window than a widely used FDA-EUA assay. The rapid (18 min) and automated TOP-SNAb correlated well with two well-established SARS-CoV-2 virus neutralization tests. The clinical utility of the TOP assays was demonstrated by evaluating early antibody responses in 120 SARS-CoV-2 RT-PCR positive adult hospitalized patients. Higher baseline TAb and SNAb positivity rates and more robust antibody responses were seen in patients who survived COVID-19 than those who died in the hospital. Survival analysis using the Cox Proportional Hazards Model showed that patients who were TAb and SNAb negative at initial hospital presentation were at a higher risk of in-hospital mortality. Furthermore, TAb and SNAb levels at presentation were inversely associated with SARS-CoV-2 viral load based on concurrent RT-PCR testing. Overall, the sensitive and automated TAb and SNAb assays allow detection of early SARS-CoV-2 antibodies which associate with mortality.

publication date

  • November 22, 2020

Identity

PubMed Central ID

  • PMC7685331

Digital Object Identifier (DOI)

  • 10.1101/2020.11.19.20235044

PubMed ID

  • 33236020