Progesterone induces meiosis through two obligate co-receptors with PLA2 activity. uri icon

Overview

abstract

  • UNLABELLED: The steroid hormone progesterone (P4) regulates multiple aspects of reproductive and metabolic physiology. Classical P4 signaling operates through nuclear receptors that regulate transcription. In addition, P4 signals through membrane P4 receptors (mPRs) in a rapid nongenomic modality. Despite the established physiological importance of P4 nongenomic signaling, its detailed signal transduction remains elusive. Here, using Xenopus oocyte maturation as a well-established physiological readout of nongenomic P4 signaling, we identify the lipid hydrolase ABHD2 (α/β hydrolase domain-containing protein 2) as an essential mPRβ co-receptor to trigger meiosis. We show using functional assays coupled to unbiased and targeted cell-based lipidomics that ABHD2 possesses a phospholipase A2 (PLA2) activity that requires both P4 and mPRβ. This PLA2 activity bifurcates P4 signaling by inducing mPRβ clathrin-dependent endocytosis and producing lipid messengers that are G-protein coupled receptors agonists. Therefore, P4 drives meiosis by inducing the ABHD2 PLA2 activity that requires both mPRβ and ABHD2 as obligate co-receptors. SIGNIFICANCE STATEMENT: Nongenomic progesterone signaling is important for many physiological functions yet the details of its signaling remain elusive. Here we define the early signaling steps downstream of membrane progesterone receptor β (mPRβ) during Xenopus oocyte meiosis. We show that progesterone requires two cell membrane receptors to work in unison to signal. The co-receptor complex possesses lipase activity that produces lipid messenger and induces receptor endocytosis to trigger meiosis progression. Our findings have broad physiological implications because nongenomic progesterone signaling operates in many tissues and regulates reproduction and metabolism.

publication date

  • October 18, 2023

Identity

PubMed Central ID

  • PMC10614741

Digital Object Identifier (DOI)

  • 10.1101/2023.09.09.556646

PubMed ID

  • 37905030