Hypertension-induced neurovascular and cognitive dysfunction at single-cell resolution.
Academic Article
Overview
abstract
Hypertension is a leading cause of cognitive impairment, attributed to cerebrovascular insufficiency, blood-brain barrier disruption, and white matter damage. However, how hypertension affects brain cells remains unclear. Using single-cell RNA sequencing (scRNA-seq) in a mouse model of hypertension induced by angiotensin II, a peptide involved in human hypertension, we mapped neocortical transcriptomic changes before (3 days) and after (42 days) onset of neurovascular and cognitive deficits. Surprisingly, endothelial transport disruption and senescence, stalled oligodendrocyte differentiation, and interneuronal hypofunction and network imbalance emerged after 3 days, attributable to angiotensin II signaling. By 42 days, when cognitive impairment becomes apparent, deficits in myelination and axonal conduction, as well as neuronal mitochondrial dysfunction, developed. These findings reveal a previously unrecognized early vulnerability of endothelial cells, interneurons, and oligodendrocytes, and they provide the molecular bases for subsequent neurovascular dysfunction and cognitive impairment in hypertension. These data constitute a valuable resource for future mechanistic studies and therapeutic target validation.