Increased translation driven by non-canonical EZH2 creates a synthetic vulnerability in enzalutamide-resistant prostate cancer. Academic Article uri icon

Overview

abstract

  • Overcoming resistance to therapy is a major challenge in castration-resistant prostate cancer (CRPC). Lineage plasticity towards a neuroendocrine phenotype enables CRPC to adapt and survive targeted therapies. However, the molecular mechanisms of epigenetic reprogramming during this process are still poorly understood. Here we show that the protein kinase PKCλ/ι-mediated phosphorylation of enhancer of zeste homolog 2 (EZH2) regulates its proteasomal degradation and maintains EZH2 as part of the canonical polycomb repressive complex (PRC2). Loss of PKCλ/ι promotes a switch during enzalutamide treatment to a non-canonical EZH2 cistrome that triggers the transcriptional activation of the translational machinery to induce a transforming growth factor β (TGFβ) resistance program. The increased reliance on protein synthesis creates a synthetic vulnerability in PKCλ/ι-deficient CRPC.

publication date

  • November 20, 2024

Research

keywords

  • Benzamides
  • Drug Resistance, Neoplasm
  • Enhancer of Zeste Homolog 2 Protein
  • Nitriles
  • Phenylthiohydantoin
  • Prostatic Neoplasms, Castration-Resistant

Identity

PubMed Central ID

  • PMC11579030

Scopus Document Identifier

  • 85209755311

Digital Object Identifier (DOI)

  • 10.1038/s41467-024-53874-2

PubMed ID

  • 39567499

Additional Document Info

volume

  • 15

issue

  • 1